Basic Definition and Properties of Bessel Multipliers
نویسنده
چکیده
This paper introduces the concept of Bessel multipliers. These operators are defined by a fixed multiplication pattern, which is inserted between the analysis and synthesis operators. The proposed concept unifies the approach used for Gabor multipliers for arbitrary analysis/synthesis systems, which form Bessel sequences, like wavelet or irregular Gabor frames. The basic properties of this class of operators are investigated. In particular the implications of summability properties of the symbol for the membership of the corresponding operators in certain operator classes are specified. As a special case the multipliers for Riesz bases are examined and it is shown that multipliers in this case can be easily composed and inverted. Finally the continuous dependence of a Bessel multiplier on the parameters (i.e. the involved sequences and the symbol in use) is verified, using a special measure of similarity of sequences.
منابع مشابه
Multipliers of continuous $G$-frames in Hilbert spaces
In this paper we introduce continuous $g$-Bessel multipliers in Hilbert spaces and investigate some of their properties. We provide some conditions under which a continuous $g$-Bessel multiplier is a compact operator. Also, we show the continuous dependency of continuous $g$-Bessel multipliers on their parameters.
متن کاملControlled Continuous $G$-Frames and Their Multipliers in Hilbert Spaces
In this paper, we introduce $(mathcal{C},mathcal{C}')$-controlled continuous $g$-Bessel families and their multipliers in Hilbert spaces and investigate some of their properties. We show that under some conditions sum of two $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frames is a $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frame. Also, we investigate when a $(mathcal{C},mathca...
متن کاملBessel multipliers on the tensor product of Hilbert $C^ast-$ modules
In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...
متن کاملMultipliers of pg-Bessel sequences in Banach spaces
In this paper, we introduce $(p,q)g-$Bessel multipliers in Banach spaces and we show that under some conditions a $(p,q)g-$Bessel multiplier is invertible. Also, we show the continuous dependency of $(p,q)g-$Bessel multipliers on their parameters.
متن کاملBessel, Frame and Riesz Multipliers
Abstract. This paper introduces the concept of Bessel and frame multipliers. These operators are defined by a fixed pattern, called the symbol, which is used after analysis, before synthesis. This concept is a generalization of Gabor multipliers. It allows specialization to any analysis/synthesis systems, that form Bessel sequences, like e.g. wavelet frames. Basic properties of this general cla...
متن کامل